Физический уровень сетевой модели
При создании систем и сетей передачи информации сетевые элементы объединяются на основе различных топологий. Выбор топологии зависит от типа сети:
- с коммутацией каналов или пакетов;
- транспортные или сети доступа;
- локальные или глобальные.
В различных типах сетей используются различные топологии и различные методы обеспечения надежности. Однако некоторые топологии используются практически во всех типах сетей. Далее рассмотрены широко распространенные топологии локальных сетей .
В инфокоммуникационных сетях различают физическую и логическую топологии сети. Физическая топология представляет собой наиболее общую структуру сети и отображает схему соединения сетевых элементов и узлов кабелями связи. Логическая топология показывает, как по сети передаются определенные единицы информации, и определяет метод доступа к сетевой среде передачи данных. В данном разделе рассматривается, главным образом, физическая топология локальных сетей.
В локальных сетях наибольшее распространение получили следующие физические топологии ( рис. 4.16): шина , кольцо, звезда , расширенная звезда , древовидная (иерархическая) топология , а также полносвязная топология , где все узлы связаны между собой индивидуальными линиями связи.
Разделяемая (shared) линия или среда передачи данных, когда пользователи делят ресурсы линии связи между собой, снижает стоимость сети. Но в каждый момент времени линией может пользоваться только одна пара абонентов, из-за чего могут возникнуть очереди, а также коллизии.
Топология шина ( рис. 4.16а) характеризуется тем, что передачу данных в данный момент времени может вести только один узел. Ожидание своей очереди на передачу данных является недостатком топологии. Если два узла одновременно начали передачу данных, то в сети возникает коллизия . При выходе какого-то узла из строя вся остальная сеть будет функционировать без изменений. Другими достоинствами топологии являются экономное расходование кабеля, простота, надежность и легкость расширения сети. Топология шина характерна для технологий ранних версий локальных сетей Ethernet , когда использовали коаксиальный кабель .
При использовании топологии кольцо ( рис. 4.16б) сигналы передаются в одном направлении от узла к узлу. При выходе из стоя любого узла, прекращается функционирование всей сети, если не предусмотрен обход вышедшего из строя узла. Подобная физическая топология использовалась, например, в технологиях локальных сетей Token Ring , где для исключения коллизий реализован детерминированный доступ к разделяемой среде (кольцу). Передавать данные может только тот узел, который захватывает и удерживает специальный маркер, который циркулирует по кольцу. В настоящее время кольцевая топология широко используется в магистральных транспортных сетях.
Топология звезда ( рис. 4.16в) требует применения центрального устройства, к которому подключены все узлы. Выход из стоя одного узла не влияет на работоспособность остальной сети. Сеть легко модифицируется путем подключения новых узлов, в ней легко организовать управление и обеспечить безопасность . Из недостатков можно отметить уязвимость центра и увеличенный расход кабеля по сравнению с топологией шина .
Топология расширенная звезда ( рис. 4.16г) используется в современных крупных локальных сетях и сетях доступа, где широко распространены технологии GigabitEthernet. В качестве центрального устройства обычно устанавливается коммутатор . Разновидностью топологии расширенная звезда является древовидная или иерархическая ( рис. 4.16д) топология , где функциональные возможности коммутаторов определяются уровнем иерархии.
Для повышения надежности и отказоустойчивости сетей их строят по полносвязной топологии ( рис. 4.16е), где все узлы соединены между собой. Подобная топология характеризуется избыточностью, повышенным расходом кабеля, но все узлы постоянно связаны между собой, имеются запасные пути передачи данных.
На практике широко используется комбинация топологий. Например, ядро сети ( рис. 4.17) содержит сетевые коммутаторы (СК1,…СК5), объединенные для повышения надежности и отказоустойчивости по полносвязной топологии. В целом топология сети представляет собой расширенную звезду или радиально-узловой способ построения сети, когда конечные узлы (У) подключены к концентраторам К, которые в свою очередь , соединены с сетевыми коммутаторами СК ядра сети. Конечные узлы (У) сети вместе с концентраторами (К) образуют локальные сети .
Совокупность локальных сетей образует глобальную (составную, распределенную) сеть (Wide Area Network — WAN ). Объединение нескольких локальных сетей в глобальную сеть (Wide Area Network — WAN ) происходит с помощью устройств и протоколов сетевого Уровня 3 семиуровневой эталонной модели OSI или уровня межсетевого взаимодействия четырехуровневой модели TCP/IP . Если LAN объединяют рабочие станции, периферию, терминалы и другое сетевое оборудование в одной аудитории или в одном здании, то WAN обеспечивают соединение LAN на широком географическом пространстве.
Логическая топология сети определяет, как узлы общаются через среду, т.е. как обеспечивается управление доступом к среде. Наиболее известные логические топологии: » точка-точка » ( point-to-point ), множественного доступа (multi access), широковещательная ( broadcast ) и маркерная ( token passing ).
Логическая топология » точка-точка » обеспечивает передачу данных от одного узла до другого, независимо от промежуточных устройств между ними. Протокол управления передачей данных при такой топологии может быть очень простым, поскольку другие адресаты отсутствуют.
Логическая топология множественного доступа характерна для Ethernet -сетей, реализованных на многопортовых повторителях ( hub ). Доступ к разделяемой общей шине имеют все узлы, но в каждый момент времени передавать данные может только один узел. При этом остальные узлы могут только «слушать».
Использование широковещательной топологии определяет, что узел посылает свои данные всем другим узлам сетевой среды.
Маркерная логическая топология , также как топология множественного доступа реализует разделение общей среды. Однако, если в топологии multi-access Ethernet -сетей доступ к среде случайный (не детерминированный), то в маркерной топологии доступ к среде детерминированный. Электронный маркер ( token ) последовательно передается каждому узлу по кольцу. Узел, получивший маркер, может передавать данные в сеть . Если в узле нет данных для передачи, то он передает маркер следующему узлу и процесс повторяется. Топологию token passing используют сети: Token Ring и Fiber Distributed Data Interface ( FDDI ).
Широко известная сетевая технология Ethernet может использовать концентраторы (hub) и кабель » витая пара » ( рис. 4.18). Физическая топология на рис. 4.18 представляет собой звезду, поскольку все компьютеры подключены к центральному устройству — концентратору ( hub ). Логическая же топология — шина, поскольку внутри концентратора все компьютеры подсоединены к общей магистрали. Поэтому выяснить, о какой топологии идет речь можно только из контекста.
Топология компьютерных сетей
Топология сети характеризует свойства сетей, не зависящие от их размеров, отражает структуру, образуемую узлами сети и множеством связывающих их каналов. При этом не учитывается производительность и принцип работы этих узлов, их типы и длина каналов.
С точки зрения физического расположения функциональных компонентов сети (кабелей, рабочих станций и т.д.) и метода доступа к среде передачи можно выделить четыре базовые топологии: «общая шина», «звезда», «кольцо» и «ячеистая (сотовая)».
Сеть топологии общей шины
Сеть топологии общей шины (моноканальная сеть)— сеть, ядром которой является моноканал. Моноканальная сеть образуется подключением группы абонентских систем к моноканалу. К числу моноканальных сетей относятся сеть Ethernet, сеть Fast Ethernet, сеть ARCNet.
Шинная топология обладает следующими преимуществами:
- она надежно работает в небольших сетях, проста в использовании и понятна;
- шина требует меньше кабеля для соединения компьютеров и потому дешевле, чем другие схемы кабельных соединений;
- шинную топологию легко расширить;
- достоинством такой топологии является меньшая протяженность кабелей и более высокая надежность, так как выход из строя одного узла не нарушает работоспособности сети в целом.
Недостатки состоят в следующем: обрыв основного кабеля приводит к выходу всей сети из строя;
- интенсивный сетевой трафик значительно снижает производительность такой сети;
- слабая защищенность информации в системе на физическом уровне, так как сообщения, посылаемые одним компьютером другому, в принципе, могут быть приняты и на любом компьютере, входящем в сеть.
Преимущества сети звездообразной топологии:
- такая сеть допускает простую модификацию и добавление компьютеров, не нарушая остальной ее части;
- центральный концентратор звездообразной топологии удобно использовать для диагностики сети;
- отказ одного компьютера не всегда приводит к остановке всей сети;
- в одной сети допускается применение нескольких типов кабелей. Рис.15-9. Схема сети с топологий шины
Сеть топологии звезды
Сеть топологии звезды— древовидная сеть, в которой имеется ровно один промежуточный узел. В качестве центральной части выступает мультиплексор (устройство, преобразующее несколько сигналов ввода в отдельный сигнал вывода; при этом сохраняется возможность восстановления всех сигналов ввода) или концентратор (устройство, позволяющее средству передачи данных обслуживать большее количество источников данных по меньшему количеству каналов передачи данных), который полностью управляет ЭВМ, подключенными к нему. Сеть имеет один центральный узел и расходящиеся от него лучами станциями и периферийными от него устройствами на концах. В такой сети все станции напрямую связаны с центральным компьютером (ЦК), который управляет потоком сообщений в сети, и сообщения от одной станции к другой можно передавать только через ЦК.
Рис.15-12. Сеть топологии звезда Расширять звездообразную топологию можно путем подключения вместо одного из компьютеров еще одного концентратора и присоединения к нему дополнительных машин. Так создается гибридная звездообразная сеть.
Рис.15-13. Схема гибридной звездообразной сети Недостатки сети со звездообразной топологией
- при отказе центрального концентратора становится неработоспособной вся сеть;
- обычно большая протяженность кабелей (зависит от расположения центрального компьютера) и, следовательно, такие сети обходятся дороже, чем сети с иной топологией.
Сеть топологии кольцаСеть топологии кольца— сеть, при которой каждый узел связан с двумя другими. Эта сеть является подсистемой старшей сети. В этой сети каждая станция выступает в роли центрального компьютера и прямо связана с двумя соседними. Достоинством кольцевой топологии является более высокая надежность системы при разрывах кабелей, так как к каждому компьютеру есть два пути доступа. К недостаткам данной топологии следует отнести большую протяженность кабеля, невысокое быстродействие, а также слабая защищенность информации. Преимущества сети с кольцевой топологией:
- поскольку всем компьютерам предоставляется равный доступ к ресурсам сети, никто из них не сможет монополизировать сеть;
Рис.15-14. Сеть кольцевой топологии
- совместное использование сети обеспечивает постепенное снижение ее производительности в случае увеличении числа пользователей и перегрузки.
Недостатки сети с кольцевой топологией:
- большая протяженность кабеля;
- невысокое быстродействие по сравнению с топологией «звезда» (но сравнимо с топологией «шины»),
Топология реальной сети может повторять одну из приведенных выше или включать их комбинацию. Структура сети в общем случае определяется следующими факторами:
- количеством объединяемых компьютеров;
- требованиями по надежности и оперативности передачи информации;
- экономическими соображениями и т.д.
Ниже приведены некоторые возможные комбинации базовых топологий. Физическая сотовая топология(ячеистая топология) — сеть, в которой есть непосредственные соединения между всеми узлами сети. Эта сеть характеризуется наличием избыточных связей между устройствами. Для большого числа устройств такая схема оказывается неприемлемой.
Рис.15-15. Сеть топологии сетки Сеть гибридной топологии— применяется для соединения нескольких сетей между собой, каждая из которых может иметь различную топологию или для создания конгломератов локальных, региональных и глобальных вычислительных сетей.